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‘cations of the model are presented and discussed.

In factor analysis one generally thinks of a transformation solution
wvithin either an orthogonal or an oblique framework. In this manuscript
a genéral model is piesented for the iﬁdepeudént clusiter solution in
factor analysis. It is demonstrated that there may possibly b a variety
of independent cluster solutions which may be generated for a given
set of data. Every orthogonal indépéndént cluster solution is discussed
as having an oblique analog.

Ihé equations presented are based upon the Harris. and Kaiser[1964]
theory cof developing oblique solutioms through the use of orthogonal
transformation matrices, An analytic basis for the computation of the
érth@ganal transformation matrices is presented in the form of the
orthomax criterion[Saundiers, 1962] and finally some empirical appli-

Assume some (n x x) factor matrix P determined by any orthogonal

factoring procedure. Then let the major product moment of P define

an (n x n) singular matrix, E%, of rank
(1) R* = pr

Assuming that the initial factoring was dome on a population

variance-covariance matrix or correlation matrix, the diagonal cntries

of E% will represent the common variances of the variables while the

ij th off-diagonal entry of 5% will represent the covariance between
the commen portions of variables i and ; and will approximate the

population covariance between variables i and §.




The principal axis representation of 5* will provide a basis for
the discussion to follow. Compute the principal axis representation

QM of R”, where the columns of Q are unit length latent vectors associated

with the non-zero latent roots which are the dizgonal entries of Ezg

The General Model for an Independent Cluster Solution of Rﬁ

Let the (r'x r) square matrix T represent any orthonormal matrix;
then (I T = TT" = I). All orthogonal transformation solutions, F, of
QM may be depjcted as

_ . . . o
(2) F = QMT. (An orthogonal transformation solution of R .)

Thus the ﬁasic structure of F consists of a left orthonormal,
3, a right crthaﬁormalj T, and a basic diagonal M. The matrix R¥
represents the major product moment of F. 1In a later section the
computation af I is discussed in some detail. At this point it is only
- necessary to assume that once determined T is constant in equaticﬁs

2, 3, 4, 5, 6, 7, and 8.

~ For the oblique ahach of F, let the (n x r) matrix é% represeht
a primary pattern matrix, in the zense of Holzinger and Harman [1941]
and let_g* represent a primary structure matrix with E% representing the
the intercorrelations of the primaries. Then from Harris and Kaiger
[19647 the following equations may be used for computing an independent

-cluster solution :

]

(3 iﬁ = QTD; (An Oblique Primary Pattern for 5%;)

!
\n [}

m "
Jr3
=

U\

@) W (An Oblique Primary Intercorrelation Matrix.)

(5) B (An Oblique Primary Structure for R*.)

g
3

The matrix D in equations 3, 4, and 5 is a diagonal matrix totally

dé?endent upon .the values of Mand T and is chosen so that (MT) will




be column normalized when post multiplied by gslg thereby insuring that
the primaries are of unit variance. If D and its inverse are elimi-
nated rfrom equations 3, 4, and 5 then the oblique covariance matrices
result:

(6)

jo
I
P

(7)

=
(1]
]
1

T‘%J
3

(8)

1=
(1}
.
=
I3

The matrix A may be thought of as a matrix of raw regression
weights for predictingrthe n variables from the r un-normalized primaries.

The matrix W represents the covariances between the r primaries with
the diagonal of W feprSéntiﬂg:thE variances of the r primaries and also
representing the diaganal'elgments of 2}; The matrix B may be thought
of as a matrix of covariances of the £Kprimariés with the n variables.
Within a Thurstanian [i947j framework the matrix A may-also be
thought af’aglthé matrix of covariances of the r reference vectors with
the_g variables. While the matrix B may be thought of within a Thur-
stonian framework as the matrix of raw regression weights for predicting
the n variables from the r un-normalized reference vectors. The
inverse of EJEE‘I; represents the covariances between the r reference
vectors with the diagenal inﬂjl representing the variaﬁcés of the

r reference vectors,

The well known relationships between pattern, struecture, factor

; ) g 2 pk 1 ) .
intercorrelaticn and R™ may be denoted as:

cg) E* = :éWiAg = EA; = A#WfA}Eé = B*A**‘.

~ ERIC
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Regardless of whether one is working in a Thurstone or a Holzinger
framevork the matrix of interest in the oblique solution depicted here
is A, In equation 7 the matrix W represents the minor pr@ductﬁmcment
of F. Thus 5* and W are product moment matrices determined from the
same "basic structure". The orthonérmal Df_E* is a left orthonormal
for F and the orthonormal of W is a right orthonormal for F. The
latent fé@ts of W are identical to the latent roots of gf - The matrix
A is the pr@déct of the ieft and right @ftﬁangrmals of F.

If theoretically "true" indep2ﬁdent!clusters are defined by the
data then each row of Ehé "factor matrix" will contain only one non-
zero entry. Each variable will be of complexity one and the planar
plot of any pair of columns of oM wiil show a concentration of points
along two radial étreaﬁs; a number of points at the érigiﬁ’and no points
off the radial streaks. If the independent clusters are mutuaLiy
orthogonal R* will be.a diagonal super matrix if the variables are
ordered properly and will have zero entries for all matric elements off
the main diagonal. The principal axis solution for such a matrix, QM,
will have ideal simple structure.(Harris and Kaiser, 1964). If the
independent clusters defined b?zgﬁ are not mutually orthogonal then
Eﬁ will not have the form of a diagonal supermatrix. For oblique
indePéndent clusters the radial streaks defined by‘gg may-be "oxrthogona-

M-!. For perfect oblique independent

lized" by post-multiplying QM by
clusters the planar plot @f any pair of columns of Q will show &

concentration of paintsvalang two orthogonal radial streaks; a numbe:r
Df.paints at the origin and no points off the radial streaks. The I

radial streaks defined by Q will be mutually orthogonal. For non-
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A" are just the r diagonal elemen of §

independent cluster data Q will define a scattering of points but not
radial streaks.

Variance Allocation in the Independent Cluster Solution

In describing the allocation of common variance there is an
interesting duality between the oblique and the orthogonal independent

cluster solutions. Following from equation 9, and Halziﬁger and

2

“

Harman (1941, p.247) let the common variance of the j th variable,h 3

be expressed in the general terms of an Gblique solution as follows:
3

& . *
.+ 2a

(L0) h, = & 4,r=185, 1%y,

‘The direct contributions of the factors to the common variance of

variable j are given by the first r terms of equation 10, while the

joint contributions of the factors are given by the remaining, r(r-1)/2,
terms in equation 1O.
The direct contributions of the r factors to the common variance

all

(o R
n
=

variables are obtained by summing the direct contributions
of each factor across all n variables as follows:

n ; n
an *2 Z %2 7 7 Z *2

ajl 5

[ et

j=1

The r(r-1)/2 joint cantributi@ns of pairs of factors across all n

variables are given by:
b3 o

2.1 B3 srees

® %
l j j ’r;féj.

gy felt ' %
(12) 215 ) ajyaly s 2wy
J

e b=

In expression 1l the values determined are just the column sums of

squares for A which are given also as the diagonal elements of the minor
] * o A

product of A". However the diagonal elements of the minor product of

r the variances of the T

4..4

primaries.

[y ]



(13-a)  (a")-@" = preg

o= p? g
(13-b)  D® = diagonar [ T°M2T]

Therefore within an oblique independent cluster framework the
direct contributions of the factors as noted in expression 1l may be

written as follows: .
L2

n *2 n % n %
(14) ,Z, A0 % M, ) 22 7 Do2 aveey ) 2 % Yep .
j=1 T =1 " . j=1 L

The total joint contribution for the pair of factcrs k and (ksl)

as given by expression 12 is

o % * s
e a, 4. .
~k,k=1 j=1 —k -] jk,il
o "
but the element ( Z a ) is just the (k, k-1)th off-diagonal

1lg‘jk Jk.l

entry of E?, which is zero, thereby implying that the following equality
(15) gli k=1 Z é; =g,k , = ©

will a wags hcld for the cbilque 1ﬁdepéndeﬁt cluater solution. Tha¥ is
:ta say, regardless of the '@bliquity” of an oblique 1n§epen§ent cluster
solution the total joint c@ﬁtributian of ary pair of fagtars to the

total variance will always be zero,

It is immediately apparent from expression 11 that for an orthogonal

independent cluster solution there are no joint contributions for the
factors inasmuch as all nondiagonal values of W are zero. The direct

coﬁtributigns of the factors are gust the chumn sums of square for
F. Thus the total sum of squares within A is the same as the total --

.

sum of squares within F

It would seem that the orthogonal and obligue independent cluster

- solutions represent the extreme ends of a span of pgssible abllque

" solutions for a given set-of data. TFor the oblique independent cluster



allAcammén variance may be accounted for totally within the framework of
second order factors, the diagonal of W, For the orthogonal independent
cluster solution, the common variance contributions are accounted for
solely as a function of the uncorrelated first order factors. Thus,
those oblique solutions falling between these two iﬁdé?éndeﬁi cluster
solutions would utilize both first and second order factors to account

for common variance.

Computation of the Orthonormal T for U%ewin”tbegjgégpenﬁeggiGluster Model

Although the model discussed in this paper may be generalized to any
square (r x ) arthanatmal, only the class of analytic orthonormals
Associated with the orthomax criteria will be discussed. Saunders (1962}
was éhe first to note that ali énalytic grthég@nal transformation
procedures could be combined for general éiscuss;an inasmuch as they

-all involve the same fourth degree moments of the data.

3

he general orthomax transformation criterion involves a max-
imization of

(16) Maximum . =

0]
T D)
. ,
fo
T o)

~ Where £ 1s the jk th element of the transformation solution, when the

criterion is applied to a factar.matfix whose rows are normalized , the
solution is referred to as a "mormal" - type solution. When the trans-
formation sclution i~ normal £jk is the jk th element of the matrix
Qgg;ggg); The matrix g? is'a diagonal matrix whose nonzero elements
téprasent'éhe variance ngthe=2 variables and is the diagonai of 5%;

When the criterion is applied to a factor matrix whose rows.are not

normalized the solution is referred to as a "raw"-type solution.



When the transformation solution is raw_;_g is the jk th element of the
jk
matrix (QMT).

The value of s in equation 16 is most arﬁaial as it is the "orthomax
weight' and it specifically defines the blind orthogonal transformation
that is computed. When Ehg orthomax weight is zera! (s = 0), maximizing
(QYT) in equation 16 will result in the raw quartimax transformation-
[Neuhaus and Wrigley, 1954]. When the orthomax weight is unity, (s = 1),
equation 16 defines Kaiser's[1958] varimax cri-erion, Within this same
framiwfrk it is:passiblegta define Saunder's[1962] equamax criterioun,

(s =1r/2), and, theoretically, the principal axis transformation

crite?icn,_(é = *m) [Kaiser,15G6].

Earfis'and Kaiser[1964] in their discussion of the independent
cluster solution suggest that the orthomax criterion be applid to (QT)
rather than (QMT). Furthermore they note that because it is Q, the
unit length latent vectors of gf; that are being tr;ﬁsfgrmed the sécgnd
term in equation 16 will be a constant and is therefore irrelevant in v
the transfﬂrmatisn.pfccess. Thus, Harris and Kaiser always compute T
to implicitly maxiﬁize the raw quartimax criterion applied.to QD).
Although Harris and Kaiser do not note it specifically it is possible to
utilize the transfarmatian.matrix_g'c@mputed as a function of Q to
define an orthogonal solution of the form (QMT) . Technigaiiy‘thén for

this one procedure the oblique solution has an crthaganal-analég.. In
the'empigical section to follow we will modify the Harris and Kaiser
procedure just slightly by using the crthgnérmal T computed as a function

of (Q) to define an orthogonal solution of the forw (QMT). The set of
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solutions computed in this fashion will be referred to as the "Harris
and Kaiser indpendent cluster solutions". All discussion in the previous

sections is perfectly generalizable to the Harris and Kaiser independent

cluster solutions.

Empirical Applications of the General Independent Cluster Model

To clarify and illustrate the independent cluster model presented in

this manuscript six examples of independent cluster solutions are discussed.

b

Five of these examples are discussed within the framework of illustrative

ot

data. For each of the illustrative examples the solution development
started vith the principal axis representation of some orthogonal factor
snlution,

For each data set orthogonal and oblique independent cluster solutions
wvere c@mputéd. One set of solutions was computed using the modified
Harris and Kaiser procedures. Twentv-four additional solutions were
generated through a systematic variation of the orthomax weight in
equation 16. The orthomax weight was varied from negative to positive

three in increments of one-half; first for the raw matrix (QM) and then

for the row normalized matrix (g*lgg)i With two exceptions only the

"best" set of independent cluster solutions is presented along with

the Harris and Kaiser solutions for each problem.

Example 1 _Perfect Orthogonal Independent Cluste>s

As previously noted when perfect orthogonal iﬁdependent clusters
are defined by the data the principal axis represantation of the factor
solution will have ideal simple structure. TIn such a case given any one
of the family of orthomax criteriﬂn_dépicted by equation 16 the only



transformation of (Q) or (QM) that will maximize it is the ideatity

MT) and (QTD) will be

matrix, T = I. For such a data set, then (

identical. (Because of the redundanc:cs of solutions for such an example

we will not provide any numerical representations of {it.)

Example 2 Perfect leiqgg;;nﬂgpenéen; Clusters(Bipolar- -Plasmodal)

t one data set defining perfect oblique independent

m

For at lea
clusters there is a possible problem in maximizing the raw orthomax
criterion when applied to (QMT). 1In Table 1 the principal axes form
of example 2 is presented. Note that when the orthomax criterion,

(.52 582 -3),"1is applied to (QMT)for this examplabthe;maximizatian

[t

of the criterion occurs for, (T = D), the identity matrix. As may
be seen in Table 1 a raw orthomax solution when used in conjunction

with the general independent cluster solution may result in a misleading

orthogonal representation of data that define perfect oblique clusters.

Table 1 about here

Presented alé@ in Table 1 are the Harris and ﬁaiser independent
cluster solutions for the data set. Clearly the oblique iﬁdepEﬂdent
clusters deflne an excellent transformation SDlutlan for these data.

Finally in Table 1 the normal varimax independent cluster séluéicns
are provided. There solutions are identical éa thé Harris and Kaiser
solutions, For these solutions the matrix (E—iggg) Waévutiligéd in

- maximizing the orthomax crirerion with the orthomax weight equal to

unity. It is both interesting and informative to point out that for

all orthomax weights greater than or equal to unity the matrdx “(H=1QMI)

El{lC - , o 10.

Aruitoxt provided by Eic:
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would always maximize the orthomax criterion utilizing the same orthonormal

=2

However for orthomax weights less than unity the only orthonormal T
' maximization : ' :
that would provide a for the orthomax criterion applied to Cgflgg;)
was the identity matrix.
The solutions in Table 1 suggest that perhaps one would be well

advised not to utilize raw transformation solutions with the general

independent cluster model, at least initially.

‘Example 3 Approximate Oblique Inéépanigpﬁ,Clﬁgte;sAjNgnfElagmcéggl

The data uéed fér this-example define oblique factors that répréséﬁt»
éppraﬁiﬁate independent clusters. These data are the eight physical
variables referred to by-Holzinger .and Harﬁan(lSél) and used as an
illustrative example by Harris and Kaiser(1964) in the development of

their independent cluster solution.

Table 2 about here

For these particular data there were a number of independent cluster
solutions generated by the orthomax criterion that dididefine clear

structure. However all of those solution sets associated with orthomax f

weights greater than or equal to uniﬁyddaﬁinad'essentially the same ?
" solutions; being almost idenﬁical to the solution set defined by the E
Harris and Kaiser indEpéqdent cluster procedures. v §
‘Although all 24 orthomax solutions generated for this data sét are 5

not presented here they appeared to define a very systematic relationship
between the orthomax weight, the orthogonal transformation matrix and the f
primary intercorrelation matrix., As the orthomax welght was varied from g
:
%

11. ' S
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negative ghree : to positive three the primary intercorrelations
associated with the solutions defined by the orthogonal ﬁransférmagién
matrices variéd from .24 to .48 for the raw solutions and varied from
.11 to .48 for the normal solutions. _Tﬁé lowest primary intercs;felaiicns
were assoclated with the orthomax welghts of negative three,rhawaver the
agpar#eng ideal primary'igterQOTrelaﬁiaﬂrcf iQSL(Hglgingéf and Harman,1941)
was associated with a number of soluticns. As the orthomax weigﬁt prqgréssed'
from negative three toward positive three the associated primaries |
appeaied to become more related until the degree of relationship was
appréximé;ely +48. Once this éarticulat ievel of relationship was attained
it served as a ceiling inasmuch as all solutions generated from subsequent
7 orthomax weights in the progression. toward pgsitivé three resulted in
a primary intercorrelation ;f .48,

As wiéh the pxeviaés examples the normal varimax and the Harris and
Kaiser procedures defined the solutions having the clearest structure.
For both sets of salutigﬁs!it is éha!gblique indegéndentrclgste: solution

that has the clearest structure.

Example 4 Approximate Orthogonal Independent Clusters(Non-Plasmodal)

The data used for this example define approximate orthogonal
o . _ were
independent clusters as might be noted if one & to plot the principal
axes representation in Table 3. These data are referred to by Harman

(1967) as the five soclo-economic variables,

Table 3 about here

12i
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Table 3 Selected -eneral Independent Cluster Solution for Illustrative Example 4%
Type Solutien -
Harris and Kaiser Normal Varimax
Principal Axis+ Oblique Orithogonal Oblique Orthogonal
1 66 -74 -18 103 -03 99 T-17 103 -02 99
2 71 62 97 -1 9 04 97 -12 9% 02
Pattern . . v
Matrix 3 94 -63 ) 09 111 25 111 11 110 20 110
5 92 2 76 38 80 49 76 37 81 48
5 73 64 . G99 ~10 g7 04 99 --12 97 (3
Primary : 100 28 106 28
Intercorrel- ]
ations _ 28 100 28 100
Associated
Orthogonal , , 73 69 73 69 73 68 73 A8
Transfor- , :
mation -69 73 -69 73 -68 73 -68 73
Matrix -
*oAll ime;mm have been multiplied by Hg@ to eliminate decimals.
* Computed from centroid solution.
Of
)
i
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As with the other illustrative data sets 24 1ndapaﬁdent cluster
solutions were generated along wiéh the Harris and Kaiser solutions.
Inasmuch as the normal varimax independent cluster séltuiéns:appaared
to result in the best structure they are presented along with the Harris
and Kaiser solutions in Table 3. The most obvieus conclusion one might
draw.from observing Table 3 is that the orthogonal inéépendent_éluster
salﬁtiaﬁshave more trivial loadings, approximate zero loadings, than
do the oblique independent ;luster sélutiéné.

As with the previous example t@e smallest magnitude farrthe primary
interéorrelgéien was associated with an orthomax wéight of negativa‘
three, As. the Drﬁhémax weight approached positive unity the primary
intercorrelation stabilized at .28 and all subsequent oblique solutions
associated with orthomax weights greater thag unity defined primary
interéafrelaticns of ,28.

| Inx;@mﬁafing the Harris and Kaiser salutiénsxwith the normal
varimax solutions it does not appear as. though there is mﬁ;h difference
between the two sets of solutions defined However when one compares
the orthonormal transformatign matrices used for the two sets of
solutions 1¢ is readily apparent that there 1s a differenge in Ehe two
solution seté. The Harris and Kaiser solutions are influenced slightly
more by the first principal axis than are the normal varimax solutions.
In the development of the nefmal'va:imax Kaiser(1958) noted that the
quartimax transformation solutions tended to bé influencéd by the-
stronger principal axes. Whether of not thi& influenece is desilrable

might be debated hDWEVEE the purpose of this manuscript is not one

13.



of debating the desirability of principal axis influences in the orthomax -

transformation solutions.

Example 5 Non-Independent Cluster Problem(Thurstone Box Problem)

The Thurstone box problem(Thurstone,1947) is a classic plasmodal ' :
‘ércblem whose solution is known to be something other than an indepéndené
ciustéf solution. The variahle complexities :ange:frémvgné to three
for this three factor sgluti@ni Although no evidence is offered in
this manuscript it is likely that 1f éng were to define a span Qf

.on

[

transformation solutions with the orthogonal iﬁdeﬁendent cluster solut
' at one extreme and thesabliqua independent cluster solution at the other

extreme the solution to the box problem would be midway between the

two indépenient cluster sglﬁt;qnsj

Unlike ﬁﬁe other examples the subjective sclution as well as three

sets of independent cluster solutions ;rerpresanted for the box p?ablem
in Table 4, the Harris and Kaiser solutions, the normal varimax solutions
and finally the solutions assoclated with the transformation matrix
determined as a function of maxiﬁiaing the orthomax éritarién for, an

orthomax weight of negative unity with the rap@rted raw matrix (QMT)...

Table 4 about here

For the first two saté of solutions, the Harris and Kaiser and
the normal varimax, it 1s Véryidiffigult to determine whether the
orthogonal solution has '"better' simplé structure that its oblique
analog. When comparing the Harris and Kailser solutions with the normal

varimax solutions it is evident that they are almost identical solutions.

14.




Table 4 Selected General Independent Cluster Sofutions for Illustrative Exampie 5%,

R T L L P PSP

Type Solution
Harris and Kaiser
Principal Axis+ .Oblique Orthogonal
1 66 64 =40 109 -11 =12 - 99 05 @ 13
2 73 06 &7 ~-13 -11 -110 13- "13 98
3 66 =68 -28 =12 108 -11 05 98 12
4 87 35 33 41 ~-14. 80 - 56 12 81
5 83 =35 =42 : 33 91 -17 43 89 14
6 84 =534 04 =15 B84 35 09 87 49
7 8 51 (07 73 =17 51 79 09 61
Pattern 8 84 28 -46 90 33 =15 88 44 16
Matrix 9 87 =28 42 =19 41 83 .09 - 55 83
' 10 88 44 20 _ 59 -16- 66 69 1 72
11 88 -02 =47 . 67 64 =17 71 69 16
12 88 -42 25 ~19 63 63 08 72 &9
13 67 64 -37 107 -13 -o08 98 05 - 16
14 72 =01 66 =19 04 108 08 19 96
15 63 -66 -32 , -08 106 -16 06 96. 08
16 94 =30 -07 17 72 29 35 78 48
17 .97 25 =02 ' 61 18 42 - 72 38 59
18 627 61 =42 107 =09 -l6 96 . 06 09
19 71 13 64 =07 =17° 106 - 17 08 95
20 66 -68 -27 ' -12 106 -10 05 97 13
Primary 100 39 =50
Intercor— _ ‘ 39 100 49
relations 30 49 100
Associated § : :
Orthogonal =56 - 57 60 =56 57 60
* Transforma~ “67 =74 08 67 =74 08
tion _ =49 -36 80 -49 =36 80
Matrix. ‘ :

* All values have been multiplied by 100 to eliminate decimals,

t Computed from centroid solution.

l .



Table 4 Selected General Independent Cluster Solutions for Illustrative Example 5%,

(cont.)

Type Solution
Normal Varimax
Oblique Orthogonal

1 109 -12 -13 99 05 11

2 -11 =10 109 14 15 97

3 -12 108 -12 05 98 10

4 43 . -13 - 78 57 14 81

5 33 91 -18 43 89 12

6 -15 © 86 33 09 87 47

7 74 -16 49 78 10 60

8 91 * 33 -16 89 44 14

Pattern 9 -18 42 82 ~10 57 82

Matrix 10 60 -15 64 700 12 71

11 67 64  -18 71 79 14

12 =18 65 61 . 09 73 68

" 13 107 =13 -09 98 05 14

14 =17 03 107 0% 20 95

15 -08 106 =17 06 96 06

16 17 73 27 36 79 46

17 62 - 18 40 72 39 57

18 107 -10 -17 .96 . 06 07

19 =05 =15 105 18 10 94

20. -12 107 -11 05 98 11
Primary 100 40 50
Intercor- 40 100 49
relations 50 49 100

Associated

Orthogonal =57 58 58

Transforma- 67 -73 08

tion =47 -35 81

Matrix -

* All values have been multiplied by

100 to eliminate decimals.




Table 4 Selected Ceneral Independent Cluster Solutions for Illustrative Example 5%*..

{cont.)

? Type Solution
Raw Orthomax
Weight = -1.0
: Oblique Orthogonal ,SubjecEiVél
1 113 =15 =25 98 06 =08 100 00 00
2 10 09 91 31 30 790 03 0L 99
3 =17 112" =22 04 99 -06- 01 98 02
4 61 -01 58 71 26 66 49 00 76
5 29 93 -31 42 89 -10 40 87 01.
6 -11 96 18 16 94 30 01 82 41
7 .88 =09 131 89 19 42 ‘74 -03 54
8 92 32 =31 89 46 -09 87 40 02
9 ~04 59 63 23 69 69 -01. 46 = 80
; 16 76 =05 - 45 82 23 55 63 =01" 66
Pattern 11 66 64 =33 71 70 =11 69 66. 01
Matrix 12 ° -08 79 44 '20. 83 53 =01 65 64
' 13 112 -16 =22 99 06 =05 98- -01 04
14 - 03 17 89 26 35 88 -02 06 97
15 -15 109 -26 05 96 =10 03 96 -02
16 22 81 10 42 85 26 29 72 38
17 - 73 26 21 81 47 36 66 28 48
18 110 " -14 =28 96 06 -11 97 - 01 -03
19 16" 03 88 35 -25 87 07 =04 95
20 =17 111 -21 04 98 =05 00. 98. 03
Primary ' 100 47 4] 100 - 10, 23
Intercor= 47 100 40 10 100
.relations 41 40 100.- - 23 22 100
Associated : o :
Orthogonal -65 .66 37 - {~=65 66 37
Transforma- . =69 72 =07 =69 72 =07
tion -31 -21 93 . =31 -21 93
- Matrix c .

* All values have been multiplied by 100 to e

1 'Thurst@na(l947)

liminate decimals.



Furehermeee when theAtwe solution sets efe eempered to the subjective .
solution it is apparent that they all define eeeeﬁtielly the same
factor etrueture |

The third set of eelueiene, hewevef, is eeneiderebly diffefent
from the firet tvo sets. The third solution set defines factors that
are not the same as those defiﬂed by the first two eete ef'ineepenﬁent
cluster solutions.While the 1oed1nge in the firet two.sets of solutions

imilar -

define patterns identical to each other end to the subjective solution
the third set of eolueiene define petterﬂe that are releted bue net
the same as theee deflned by the nermel verimex solutions and the Herrie
and Kaiser eolutiene;

When varying the orthomax weight on. raw en& row normalized matrices
a vast effey ef diffeteﬁt iﬂaepenﬂent cluster solutions were genefeted;
As with the eight phyeieel variables the primeriee tended to ehew a

low degfee of reletienehip when eeeeeieted with orthomax welghts leee

than negetive unity. The primary intereefreletiene tended toward eeebility o

when the orthomax weight was greater ehen or equelrte‘unity. As with
the previeue illustrative exemplee it was the normal varimax independent
cluster solutions as well as the Harrie end Keieer 1ndependent elueter
eclutienelchet defined what appeared to be the best ‘solutions out of all
of thoee that were genefeted. As one eeﬁeiﬁefe'tee eelutieﬁe An. TeEie.AA
=it is important to keep in mied the feet thet the ideel eimple etrueture

solution for these &ete is not of an independent elueter neeure-

Exeﬁple 5 Noe = Independent Glueter Proble (A,E, e 4555)

The Geen(1959) egg preblem 18 e‘”eemiepleemedel" problem whose

ldeal eelution must, by vi:tue Qf'the:methede used’ in defining the

£
=




. vafiableé, be something other than an ?ﬁdepeﬂdént cluster solution.
The 21 variables in'the‘pfablém are a function of six basic épatial
measurements taken on 100 chicken eggs falling into one of four egg
grading éatégcriés; small, medium, large, and jumbo. Ratiés were

:f@rmed between the six spétial measurements to define an additional 15
fériables.

Coan provides both an orthogonal and‘aﬁ ébliqué transformation

'salutiaﬁ for these data. Interestingly enough there 1s little com-
parability between the factors deflned by the two Solutjcns. We have
~included this particular data set in this maﬂuscript becausa in contrast
to the éthar examples it ;learly'indicates that the Harris and Kaiser
procedure will define 8olutions that are considerably different from

thase Ealgtions defined by ‘the normal varimax Specifically as may

be noted in Table 5 the normal varimax sclutians are quite different from

the Harris and Eaiser'sgluticﬁs for these data.

Iéble 5 about here

It can be seen in Table 5 that the normal varimsxA@rthaganal soluticn
is strikingly similar to the squectivg Drthagonalrsclutian butrthe
normal va:iﬁax oblique indapendent cluster solution beafg no resemblence
to the subjéctivé,ablique saluﬁiong 'fhé nofmal‘vafiﬁax oblique Eﬁiutiaﬁ
defines essantially the same factors as its grthogenal analog whiah are
not the same factors déscribed by Coaﬁ [ cblique sclutian

It may also ba noted in ‘Table' 5 that tha Harris and Kéiser leiéue
iﬁdépenﬁént7cluster solution defines.many of the same factars as does
the-subjéétiv, llque solution rapartad by Coan. Moré impnrtantly

is the. fact that the Harris and Kaiser arthoggnal sclutign is very




Tablp 5 Selected Gggeraigigdgpe§§ent_ﬁlustg: Eﬂlq}iqnffp:j:;;ustrazive,Examplé4§%7

Type -Solution
- =  Warris and Raser
— Principal Axist _____Oblique _ ,7 Orthogonal

99 -07 -04 -04 04 -05 76 =05 00 00 27 06 78 -05 08 -00 .60 07 .
87 42 11 10 -11 15 -05 24 12 -0z 88 23 47 29 02 -02 72 42
. 88 =35 =19 14 -12 15 00 -02 03-15 956 =34 56 =14 13 21 73 -23
73 59 -30 -03 -10 1C 02 07 =45 -01 .78 . 16 4021 -46 01 65 41
96 16 01 03 -24 03 -05'=24 11 03 94 41 55 =01 06 01 78 31
92 -30 -06 -12 =12 19 00 -02 06 =16 100 -37 59 =14 15 -08 75 -19
93 -28 -11 -11 12 =08 97 =09 -07 -01 03 -14 83 -16 08 -01 50 -13
97 08 03 -11 11 -14 102 -07 =01 -06 -06 27 83 00 04 -09 50 22
91 37 09 -03 12 -06 89 01 21 -02 02 -12 80 12 31 00 47 -14
Pattern 10 95 18 -08 -07 22 -06 115 14 -08 =03 =12 -22 87 =02 07 -01 47 -09
‘Matrix 11 97 09 -02 13 09 -13 88.0L 03 18 05 29 78 07 05 15 54 23
12 12 93 33 -04 04 03 02 41 08 -20 =02 59 -01 55 -15-28 07 77

13 28 -41 82 25 00 06. -02 32 113 =01 09 12 ~ 17 12 97 -01 10 -n2

14- 01 84 26 28 26 -25 01 116 07 00 -02 -16. -08 84 =12 -N1 02 51
1513 93 21 27 04 00 -01 46 .06 15 00 63 =03 60 =17 06 10 77

16 01 -97 19 17 -01 00 02 -13 55 16 =03 =42 °~ 09 =37 64 '21 -N5 —64

17 17 -87 -33 25 13 15 00 20 -08 30 02 106 -02 -26 14 41 -09 -85

18 01 -28 ~38 86 -03 -11 01 00 00 100 00 03 =01 =02 02 97 05 -19

19 12 80 =55 =05 11 09 00 33 -90 01 04 -15 =-13 35 =86 01 01 32

20 02 95-28 05 01 -04 =02 15 -56 10 00 45 =10 39 -65 03 05 .62

21 17 90 17 21 -14 22 =02 =16 07 22 -04 122 00 34 -18. 08 12 90

(e e s B R o IRV, I R P

Primary : 100 =11 23 03 91 04
Intercor- o -11 100 -49 -18 07 87
relations . ’ ' 23 =49 100 11 07 -53
' 03 =18 11 100 04 -32

91 07 07 04 100 22

04 87 =53 =32 22 100

Associated ' 74 01 09 01 66 12 74 01 09 01 66 12
Orthogonal : : - =12 48 =45 -13 05 73 -12 48 =45 -13 05 73
Transfor- , =04 24 85 -34 -13 31 --04 24 85 -34 -13 31
mation _ -11 32 24 90 06 08 -11 32 24 . 90 06 08
Matrix . =34 -55 11 05 54 32 =54 =55 11 05 54 32
; : 37 =55 00 23'=51 50 37 -55 00 23 -51 50

%A11 values have'béen'multipiiad by 100 to eliminate decimals.

tComputed’ from centroid solution,




Table 5 Seclected General Independent Cluster Solution for I1llustrative Example 6-
(cont.) o ' 7

Type Solution

__Normal Varimax - ____Subjective T
) Orthogonal _ _____Oblique i ____Orthogonal | -
199 03.06-91 =02 -03 76 00 00 04 26 02 99 04 02 ~01 03:=06
2 81 54 03 -01 23 07 =-03. 39 -01 00 88 02 81 .55 16 -03 =22 00"
3 90 -25 08 23 25 03 00 02 01 53 100 00 90 =22 02~ 25 =23 N0
-4 70 52 -45 -01 20 =01 03 ~02 61 02 79 02 69 57 =41 -03 -18 -03
+5 92 27 04 01 25 -15 =03 -06 -01 04 - 97 17 91 28 04 =01 -23 -18
6 93 -22 10 -07 25 04 00 02 -0l -04 103 =47 93 =21 05 -05'-24 007
7 97 -21 05 =02 -10 -01 99 -09 03 04 03 -10 97 =19 00 =01 12--04-=
8. 97 18 (04 -11 =13 -06 . 105 00 -01 =19 -09 Q5 96 18 02 -12 15.-10
: 9. 92 -20 28 -01-10 02: 90 09 -29 04 03 -10 - 093 =21- 23 00 11 -02 -
Pattern 10 97 =09 105 -02 -16. 08 116 09 01 04 -18 -12 - 98 -07. 01 -01 18 04 -
Matrix 1195 2305 13 -09 -04 116 00 00 04 =23 30 95. 20 01 00 19 -10.
L 12 - 02 96 -08 =27 00 04 03 50 -01 =62 =06 =02 03 - 94 01 =32~ 00 04 -
1321 =02 97 00 02 07 "-03 74 128 ~04. 09 -02 25 =12 95 -01 -02 04 -
14 -09 91 -03 03 00 39 =03 110 -03 =02 ~06 -15 =07 .91 07 =02 00 39 -
15 02 99 -10 07 0L 05 03 '57 01-02-06 47 02 99 01 0L 00 05.
16 ©6 -78 59 22 -01 02 00 00 =69 47 00 02 07 =82 50 25 -01 Ol.
17.-07 -86 09 43 00 22 -06 00 00 91 03 =07 -07 =84 02 48 -01. 227 .
18 03 -17 00 98 00 -01 00 02 00193 -03 152 00 -10 O1 99 01 -0l -
1912 52 -82 02 0L 13 00 -02' 106 04 00 =05 -15 61 =75 00 00 16
20007 78 =61 03 OL -02 00 00 72 00 -03 37 =09 84 =52 =01 00 =01
21 - 07 95-13 06 00 =24 03 06 03 02 <06 95 = 05 96 -04 00 01 -24

Primary , 100 =06 -19 =01 92 03
Intercor- : . =06 100 65 -72 09 82
relations . : ~19° 65 100 =54 =08 61
| 01 =72 =54 100 -19 -86 -
92 09 -08 -19 100 23
03 82 61 -86 23 100

Associated 99 12 08 00 -05 =02
Orthogonal -08 91 -39 =13 -02 00
Transfor- -10...32 88 -34 04 00 -
mation =05 24 27 93 -06 11
Matrix ~05 =01 04 02 75 -66
=02 =04 00 -12 =66 74

*All values have been multiplied by 100 to eliminate decimals.




Table,5 Selected General Independent Cluster Solution for Tllustrative Example 6%

B (cont.) L o - e
Type Solutien
I - __Normal Orthomax Weight = 2 - - __Normal Varimax
3 ) ___Oblique B __ Orthogonal _____ Obligue

1 76 -05 01 -01 24 06 80 -0L 08 00 58 08 101 00 -01 =02 =N6 =02
2 -02 37 09 -03 84 13 49 40 -01 -07 68 34 74 54 11 01 20 04
3 03 -05 02 20 93 -22 58 =15 13 25 73 -16 87 =28 -02 18 22 04
4 06 13 -49 =01 73 10 44 31 -48 -06 60 33 70 35 =44 01 16 01
5 =02 -17 07 01 92 40 37 09 04 -01 76 311 85 25 06 02 21 -14
6 03 -06 05 =13 98 =30 60 -15 16 =04 75 =15 80 =30 00 -12 24 06
7 99 =14 -04 -N3 01 -10 84 -17 10 01 49 -09 102 -26 =07 -05 =14 01
8 104 -04 00 =09 -09 20 84 07 05 -11 48 19 100 15 00 -10 -18 =05
9 90 -01 24 -01 01 -10 80 -12 33 02 46 -10 94 =17 20 -03 -13 03
Pattern 10 116 12 -04 -02 -15 -23 88 -02 09 01 45 -08 104 =13 =06 -03 -21 10
" Matrix i1 91 -08 03 17 01 25 80 14 05 12 51 22 97 26 04 16 -14 -04
12 02 60 06 -26 -04 32 00 69 -19 -37 04 58 =02 98 13 -20 -02 05
13 -07 44 117 -01 11 07 14 13 97 00 12 00 07 33 109 01 04 06
14 01 138 08 01 =07 =41 =07 93 =15 -07 -03 30 =12 100 17 08 -02 39
15 00 69 03 11 -04 40 -01 75 =22 -04 05 61 =04 108 12 16 -N2 04
l6é -01 -22 59 D 00 -24 06 -48 68 29 -01 -48 02 =61 49 15 01 01
17 -01 06 -04 39 02 -83 -04 -43 18 51 -07 =71 =03 -B4 -09 34 02 21
18 - 01 05 =03 108 ~04 20 00 -03 01 99 03 ~07 01 03 -01 101 -03 -D6
19 04 35 -93 02 -01 -24 -10 39 -89 =04 -03 19 -03 28 -82 04.-01 14
20 01 26 -61L 07 -04 30 =07 50 -70 05 00 49 =04 66 -50 09 -02 02
21 -01 04 02 16 =06 103 02 53 ~24 03 07 80 00 104 08 17 -n3 25

100 =01 20 03 92 10 - 100 06 16 03 25 -08
-01 100 -54 -38 10 89 06 100 =49 =27 14 00
Primary 20 =54 100 24 10 =54 ) 16 =49 100 08 =08 02
Intercor- 03 -38 24 100 03 =45 ' 03 =27 08 100 07 14
relations 92 10 10 03 100 21 25 14 -08 D7 100 -04
10 89 -54 =45 21 100 7 -08 00 02 14 -04 100
Associated -76 =07 =09 00 -63 =12 =76 ~07 =09 00 -63 =12 99 12 08 00 =05 =02
Orthogonal =09 62 =50 -22 01 57 -09 62 -50 -22 01 57 -08 91 -39 =13 =02 00
Transfor= 07 =30 -83 ¥ 11 -2¢6 07 =30 -83 37 11 =26 -10 32 88 -34 G4 00
mation -10 36 22 89 03 12 -10 36 22 89 03 12 =05 24 27 93 =06 11
“Matrix - .52 44 =06 =D2 =537 -45 52 44 -06 =02 =57 =45 =05 -01 04 02 75 -66
- 37 =45 01 16 -51 62 37 =45 01 16 =51 62 -02 =04 00 -12 =66 74

*Al11l values have been multiplied by 100 to eliminate decimals.




similar to.the subjective orthogonal solution. That is, although the
Harris and Kaiser Grthgganél and oblique independent cluster solutions
bear no resembelance to each other in terms of the factors they define
land although they bear little similarity to the normal varimax oblique
solution in terms of factors defined they do appear to define the same
'facﬁars as their corresponding subjective sclutions as reported by Coan.
In Table 5 an additional set of othomax solutions is reported.

For these particular data‘thé deflnition of an ideal solution was
somewhat elusive, but if Coan's reported solutions are accepted as

the ideal solutions then the normal orthomax solutions assoclated with
an orthomax weight of positive two are more desirable than the normal
varimax solutions. Thése solutions are the extfa'sgt reported. It

is interesting to note that although these solutions are not the same
as the Harris and Kaiser solutions they would result in the same
;ntérpretaciﬁns iﬁasmuéh as they define the same factgfs, orthogonal
aﬁdréblique, as the corresponding orthogonal and oblique, respectively,

Harris and Kalser independent cluster solutions.

Sqm@afyAQE7§mp;;;§a;;Appi;catiéqs
in attempting to generalize the éystam associated with the arthamaé
independent cluster solutions generated for the illustrative data sets.
The sysﬁématie varying af the orthomax weight will not always result
in a set of indapéndant cluster solutions that appéagété be gystémétically
related nor will it result in a stabilization of the primarg intercorrelations.
Yet, consistancies and inconsistancies néted in tlie empirical section

served as the bases for the title of the manuscript,
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Using the systematized Computational procedures described in an
earller part of  thi mgnusiflpta variety of independent cluster solutions
were generatad. For every data set the egquamax, quartimax and varimax
solutions, both raw and n@rﬁal, were ccmputed along with numerous other
orthogonal solutions. For each orthogonal solution am oblique analog
was computed. Also computed for each data set were the Harris and
Kaiser iﬁdapenﬁent cluster solutions.

The solutions raﬂa:dgﬁ were the Harris and Kaiser solutions as
well as the "best” set of orthomax solutions. For four out of five of
the data sets the normal varimax independent cluster solutions were
superior to the other orthomax indépendent cluster solutions, in simple
Structure and/or defining the factors in accordance with the subjective:
solutions. However, it was noted that for one ?articular set of data
the normal varimax solutions tended talbé misleading in terms of defining
factors. .Althcugh there was alvays a reasonable orthomax solution set
for each set of empirical data analyzed the particular orthomax weight
defining the sglﬁtian could not be determined a priori. Furthermore it
was evident that disastéréus results could emerge with certain orthomax
solutions,

;Eafﬁunately the Harris and Kaiser procedures as modified in this
manuscript always provided the best set of independent cluster solutions
for the data sets. These results were not expected. Thé fact that the
orthogonal independent cluster solution defined by the Harris and Kaiser
procedures was without exception as good oy “:etter than the best
orthomax orthogonal solution was totally unarpected, It would seem
as though we have, quite by accident, digﬁa§ered a . pr zedure for computing

Drthagcnal transfcrmazlnn salutions that may be superior to the more

‘ tradlticnai ngceduras emplcyed Wlth the géneral bfthﬁmax'eguatigﬁ; at

7118;:1




least within the framework of simple structure.
set, the five socio-economic

For ‘at least one particular data
cluster solution appeared to be

variables, the orthogonal independent
better within a simple structure framework than the oblique independent

For another data set, the box problem, it was evident

cluster solution.
that the ideal solution was not of an independent cluster nature but

cluster solutions appeared to be better within a simple  structure
framework than the orthogonal independent cluster solutions.

Discussion

The objective of this manuscript was to present a general model
The model,

for the independent cluster soiution in factor analysis.
having its basis in the work of Harris and Kaiser (1964), was presented

and discussed. .
It was noted that for data that define perfect orthogonal independent

clusters the model will result in only one solution, an orthogonal
independent cluster solution, More precisely the principal axis
representation of such a solution would have perfect simple structure.

For a data set that define perfect oblique independent clusters there

areetwa'passibla solutions defined; the first is an orthogonal solution

'he

while the second is an oblique analog of the arth@ganél solution. For
such a data set it is rather apparent, when looking at the transformation

solutions, which particular solutions has better simple structure. Th

simple structure associated with the oblique independent cluster solution

will be vastly superior to that of the orthogonal solution.

9.




For a data set that defines factors that are not of an independent

cluster nature there are also two possible independent cluster

Tepresentations; the orthogonal representation, which is the tyvpe of
transformation solution typically used in many factor analyses, and the
oblique analog of the orthogonal solution. For this particular data
set the transformation solution that is most interpretable within a
simple structure framework will be a function of whether or not the
data define factors that tend toward orthogonality or whether or not
they define factors that do not tend toward orthogonality. Unfortunately
wé have been unsuccessful at defining some meaningful criterion for
comparing an orthogonal solution with its gblique analog to determine
which solution is more intefprétable withi§ a simple structure ffaﬁevgtk.
The results presented in the empiriﬁal sectlon suggest that the
Harris and Kaiser (1964) procedures as modified in this manuscript
will provide the best set of indespendent cluster solutions. Although
it may be possible to generate a number of independent cluster solutions
by systematically varying the @rtharﬁsx welght the results of the
empirical applications presented herein suggest that when one does
get a desirable solution through variations of the orthomax weight
in the orthomax criterion the results that they get will most likely
be siﬁilar to the results obtained using the modified Harris and
Kaiser procedures. 'Alternatively it is possible that they might get
very misleading results, | :
The orthogonal transformation solution has been a panacea in
factor analisis.i With the advent of the work of Harris and Eaiser (1964)
the oblique independent cluster saluticnralsc began‘to-Eegéme‘a

panacea for some researchers. Seldom if ever do the researchers report -

20,




both an arﬁhaganal and an oblique independent cluster solution. Even
vhen the Harris and Kaiser oblique iﬂéependent cluster procedures appear
to define a poor solution it ig possible to compute an orthogonal
solution that is:as bad or worse than the oblique Harris and Kaiger
independent cluster solution. Using the procedures set forth in this
manuscript it is possible to bring some order to the chaotic use of the
independent cluster solution.
In summary then:
a) in this manuscript certain algebraic similarities between the
orthogonal and gblique independent cluster solutions haverbeen'natzedi
thereby éroviding an algebraic link between the orthogonal and oblique
independent cluster golutions;
b) xemgirically it has been deménsﬁratéd that by allowing the
orthomax weight to vary in the orthomax criterion it is égssibla
to generate a varilety of independent cluster solutions for a single
data set;
é) although the general model does nost assurgdiy exist it appears
as though it is the Harris and Kaiger procedure that define the best
set of indépenéent cluster solutions, |

As a function of the empirical presentations in this manuseript
the following Procedure is suggested fér use in the routine gaiculatién
of orthogonal and oblique independent cluster solutions fr;m gome
orthogonal factor matrix P, | |
‘a) Compute the major - product R* of P as PP',
b) Compute the principal axis representation M of R*, where the
columns of Q are unit length latent Gécté;s associated with the non- -

zero latent roots which are the diagonal entries of E?;




c) Compute an orthonormal transformation matrix T such that QT maximizes
the orthomax critafian.‘ The orthomax criterion for this particular case
as noted by Harris and Kaiser (1964) Qill necessarily be general

inaémugh as the second term of the criterion equation, the one associated
with the orthomax weight, will be a constant.

d) Compute the primary factor intercorrelation matrix W% ag

-1 2 -1
W& =D T'MTD

where D” is the diagonal matrix whose nonzero entries represent the
column sums of squares of MT.
e) Compute the primary pattern matrix A* and the primary structure

matrix B¥*:

£) Final;y compute the orthogonal analog, F, of the oblique independent
cluster solution as:

In final conclusion it is most prudent to reaii;e that any data
sat may’be forced into an independen# structure framework, If, when
in the inﬁePEQdent cluster framework, thé varlables appear to be
complex it may be that the independent cluster framework does not
adequately describe the data in a gimple étru;tufe gense, For such data
some aﬁher ﬁyp; of oblique solution will most ;ikeiy provide a better

simple structure solution than the independent cluster solutions.
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